Lorentz factor 
γ 
= 

γ = E / m 
Transverse emittance 
ε 
= 
m 
ε = ε_{N} / γ 
Transverve beam size at IP 
σ_{x} = σ_{y} 
= 
μm 
σ_{x}σ_{y}
= ε β* 
Effective area xsize at IP 
Σ_{x} 
= 
μm 
Σ_{x}^{2} = 2σ_{x}^{2}cos^{2}(α/2) + 2σ_{z}^{2}sin^{2}(α/2)

Effective area ysizeat IP 
Σ_{y} 
= 
μm 
Σ_{y}^{2} = 2σ_{y}^{2}

Geometric factor 
S 
= 

S =
2^{1/2} σ_{x} / Σ_{x}

Separation factor 
F 
= 

F =
exp(d^{2} / 2Σ_{y}^{2} ) 
Luminosity per bunch pair 
L_{bb} 
= 
Hz/cm^{2} 
L_{bb} = f_{rev} N^{2} cos^{2}(α/2) F / (2πΣ_{x}Σ_{y})
= f_{rev} N^{2} cos^{2}(α/2) S F / (4πσ_{x}σ_{y})

Average number of processes per crossing 
μ 
= 

μ = σ_{proc} L_{bb} / f_{rev} 
Luminosity (all bunches) 
L 
= 
Hz/cm^{2} 
L = n_{bb} L_{bb} 
Integrated luminosity 
L_{int} 
= 
pb^{1} 
L_{int} = L H T 
Rate of processes 
R 
= 
Hz 
R = L σ_{proc} 
Lumi half life (burnoff 1 IP) 
τ 
= 
h 
τ = (1 h / 3600 s) (2^{1/2}1) N / (L_{bb} σ_{proc})

Stored beam energy 
E_{stored} 
= 
MJ 
E_{stored} = E N k_{b} 